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What  is  landmark?	
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Source  mesh	

Landmark  or  set  of  landmarks	

Not  necessarily  geometrically  
prominent	



Why  landmarks?	
•  Correspondence computation 
•  Shape analysis 
•  Anthropometric studies 
•  Initial step in full shape registration 
•  Reuse of application-specific landmarks 
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[The  Armadillo  AIM@SHAPE  ]	

[Feature   points   for   the   human   body,  
Humanoid  animation]	

Landmark	

L1	
L2	

ISO/IEC  FCD  19774  -‐‑-‐‑  Humanoid  animation,  Feature  points  for  the  human  
body,  h]p://h-‐‑anim.org/Specifications/H-‐‑Anim200x/ISO_  IEC_FCD_19774/
FeaturePoints.html	
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Landmark  	
Transfer	

Source	
Target  N	

Target  2	

Target  1	

Correspondences	

L1	

L2	

Lk	



Objective	
Requirements: 
•  Robust and fast  
•  Transferred landmarks are persistent across pose change  
•  Transfer efficiently to collection of multiple target shapes 
 
•  + 
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Landmark’s  	
Geometric  saliency	

[CAESAR  Project],  etc.	
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How  about  
multiple	
targets?	

MS	

T1	

T2	

T3	

Full  	
registration  is	
expensive	

Why  interesting?	
Possible  solution  for  landmark  transfer:	
•  Approach  as  a  problem  of  full  shape  registration	
•  Dense  deformable  shape  registration  gives  us  a  set  of  all  landmark  

correspondences	

MS	

MT	

correspondence	



Related  approaches	
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Relevant publications: 
•  [Allen et al.]’02 
•  [Allen et al.]’03 
•  [Seo et al.]’03 
•  [Chang et al.]’08 
•  [Huang et al.]’08 
•  [Tevs et al.]’09 
•  [Tevs et al.]’11 

No shape is completely deformable. Every deformable shape 
matching method uses some deformable model 

Registration  techniques  which  
rely   on   initial   sparse   and  
coherent  correspondences	

manual	

regular	

planned	

Nouvelle technique: there were no previous work on user-driven landmark transfer 

 

 



Marker  correspondence:  manual	
vent us from using matching algorithms, such as Praun’s, that rely
on having complete surfaces.

Filling holes is a challenging problem in its own right, as dis-
cussed by Davis et al. [2002]. Their method and other recent, direct
hole-free reconstruction methods [Carr et al. 2001; Whitaker 1998]
have the nice feature that holes are filled in a smooth manner. How-
ever, while smooth hole-filling is reasonable in some areas, such as
the top of the head and possibly in the underarm, other areas should
not be filled smoothly. For example, the soles of the feet are cleanly
cut off in the CAESAR scans, and so fair surface filling would cre-
ate a smooth bulbous protrusion on the bottoms of the feet. The
region between the legs is even more challenging, as many recon-
struction techniques will erroneously bridge the right and left legs,
as shown in Figure 2c. Here, the problem is not to fill the holes, but
to add them.

The parameterization method described in our previous
work [Allen et al. 2002] might seem to be a candidate for solv-
ing this problem. There, we start from a subdivision template that
resembles the range surface, then re-parameterize the surface by
sampling it along the template normals to construct a set of dis-
placement maps, and finally perform smooth filling in displacement
space. (A related displacement-mapped technique, without hole-
filling, was also developed by Hilton et al. [2002].) Here smooth-
ness is defined relative to the template surface, so that, for example,
the soles of the feet would be filled in flat. However, to avoid cross-
ing of sample rays, displacement-mapped subdivision requires that
the template surface already be a fairly close match to the original
surface [Lee et al. 2000], which is not trivial to achieve automati-
cally considering the enormous variation in body shapes.

Kähler et al. [2002] parameterize incomplete head scans by de-
forming a template mesh to fit the scanned surface. Their technique
has the additional benefit that holes in the scanned surface are filled
in with geometry from the template surface, creating a more real-
istic, complete model. Their deformation is initialized using volu-
metric radial basis functions. The non-rigid registration technique
of Szeliski and Lavallée [1994] also defines a deformation over a
volume, in their case using spline functions. Although these ap-
proaches work well for largely convex objects, such as the human
head, we have found that volumetric deformations are not as suit-
able for entire bodies. The difficulty is that branching parts, such
as the legs, have surfaces that are close together spatially, but far
apart geodesically. As a result, unless the deformation function is
defined to an extremely high level of detail, one cannot formulate a
volumetric deformation that affects each branch independently. In
our work, we formulate a deformation directly on the body surface,
rather than over an entire volume.

Our matching technique is based on an energy-minimization
framework, similar to the framework of Marschner et al. [2000].
Marschner et al. regularize their fitting process using a surface
smoothness term. Instead of using surface smoothness, our op-
timization minimizes variation of the deformation itself, so that
holes in the mesh are filled in with detail from the template surface.
Feldmar and Ayache [1994] describe a registration technique based
on matching surface points, normals, and curvature while main-
taining a similar affine transformation within spherical regions of
space. Our smoothness term resembles Feldmar and Ayache’s “lo-
cally affine deformations,” but we do not use surface normals or
curvature, as these can vary greatly between bodies. Further, our
smoothness term is defined directly over the surface, rather than
within a spherical volume.

3 Algorithm
We now describe our technique for fitting a template surface, T , to a
scanned example surface, D. Each of these surfaces is represented
as a triangle mesh (although any surface representation could be

v0 v1

v2 v3 v4

m0

T0 T1
T2

T3
T4

Figure 3: Summary of our matching framework. We want to find
a set of affine transformations Ti, that, when applied to the ver-
tices vi of the template surface T , result in a new surface T ′ that
matches the target surface D. This diagram shows the match in
progress; T ′ is moving towards D, but has not yet reached it. The
match proceeds by minimizing three error terms. The data error,
indicated by the red arrows, is a weighted sum of the squared dis-
tances between the transformed template surface and D. Note that
the dashed red arrows do not contribute to the data error because
the nearest point on D is a hole boundary. The smoothness er-
ror penalizes differences between adjacent Ti transformations. The
marker error penalizes distance between the marker points on the
transformed surface and on D (here v3 is associated with m0).

used for D). To accomplish the match, we employ an optimization
framework. Each vertex vi in the template surface is influenced
by a 4× 4 affine transformation matrix Ti. These transformation
matrices comprise the degrees of freedom in our optimization, i.e.,
twelve degrees of freedom per vertex to define an affine transfor-
mation. We wish to find a set of transformations that move all of
the points in T to a deformed surface T ′, such that T ′ matches well
with D.

We evaluate the quality of the match using a set of error func-
tions: data error, smoothness error, and marker error. These error
terms are summarized in Figure 3 and described in detail in the fol-
lowing three sections. Subsequently, we describe the optimization
framework used to find a minimum-error solution. We then show
how this approach creates a complete mesh, where missing data in
the scan is suitably filled in using the template.

3.1 Data error
The first criterion of a good match is that the template surface
should be as close as possible to the target surface. To this end,
we define a data objective term Ed as the sum of the squared dis-
tances between each vertex in the template surface and the example
surface:

Ed =
n

∑
i=1

wi dist2(Tivi,D), (1)

where n is the number of vertices in T , wi is a weighting term to
control the influence of data in different regions (Section 3.5), and
the dist() function computes the distance to the closest compatible
point on D.

We consider a point on T ′ and a point on D to be compatible
if the surface normals at each point are no more than 90◦ apart
(so that front-facing surfaces will not be matched to back-facing
surfaces), and the distance between them is within a threshold (we
use a threshold of 10 cm in our experiments). These criteria are
used in the rigid registration technique of Turk and Levoy [1994].
In fact, if we had forced all of the Ti to be a single rigid body

3
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[Allen  et  al.]’03	 [SEO  et  al.]	

argmin(α ⋅Edata +β ⋅Esmoth +γ ⋅Emarker )

B.  Allen,  B.  Curless,  Z.  Popović,  The  space  of  human  body  shapes:  reconstruction  and  parameterization  from  range  scans,  
Proc.  ACM  SIGGRAPH,  pp.587-‐‑594,  2003.  	
B.  Allen,  B.  Curless,  Z.  Popović,  Articulated  body  deformation  from  range  scan  data,  SIGGRAPH  2002,  July  2002,  San  
Antonio,  Texas.	
H.  Seo,  N.  Magnenat-‐‑Thalmann,  An  automatic  modeling  of  human  bodies  from  sizing  parameters,  Proc.  ACM  symposium  
on  Interactive  3D  graphics,  pp.19-‐‑26,  2003.	

[Allen  et  al.]’02	

Manual  marker  assignment  is  used  to  drive  ICP:	



Marker  correspondence:  regular	
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Octree 
sampling 

Q.-X. Huang et al. / Non-Rigid Registration

tion errors and to allow for small non-isometric deforma-
tions, we define M as

Mi j =

{

(
ci j−c0
1−c0

)2 ci j > c0,
0 otherwise,

(3)

where the threshold c0 determines how much error in the
consistency we are willing to accept. We use a value of 0.7.
As shown in [LH05], the entries in the eigenvector x corre-
sponding to the largest eigenvalue λmax of M define a score
for the initial correspondences.

Starting from an empty set, we iteratively add the corre-
spondence that has the next highest score to our set of kernel
correspondences K, but only if its consistency measure (2)
with respect to all kernel correspondences already in K is
above the threshold c0.

4.3. Correspondence Propagation

The kernel extraction results in a set of consistent correspon-
dences. However, this set can be very sparse. Therefore, we
expand the set of correspondences using a propagation strat-
egy that respects the geodesic consistency criterion.

Given a sample si that does not have a corresponding
point, we look for the nearest s j with a correspondence
(s j, t j). We then assign a target sample that is most con-
sistent with the kernel correspondences using the geodesic
distance criterion

ti = argmin
t∈Ng(t j ,T̂ )

eK(si, t) (4)

where the consistency error eK is defined as

eK(s, t) = ∑
(sk ,tk)∈K

[dg(s,sk)−dg(t, tk)]
2, (5)

where the summation is over all kernel correspondences
(sk, tk). The correspondence propagation continues until all
samples are assigned to a target point.

After propagation we assign a confidence weight to all
correspondences. This weight is defined as a function of the
correspondence’s consistency compared to the consistency
of the kernel correspondences

wi = exp(−
eK(si, ti)

2e
), e =

1
|K| ∑

(sk,tk)∈K

eK(sk, tk). (6)

4.4. Correspondence Fine-Tuning

Due to efficiency reasons, the above computations were per-
formed using the reduced sample sets Ŝ and T̂ . This means
that a correspondence always has its end point in the reduced
set T̂ . When S′ is close to T , the correspondences on Ŝ and
T̂ become inaccurate. Hence, correspondences are allowed
to have end points in the full target point cloud T as opposed
to the subset T̂ .

For each correspondence (si, ti), we replace the end point
ti with t j ∈ Ng(ti,T ), if t j is the nearest neighbor of the
deformed sample s′i in T .

Figure 4: Correspondences between source (silver) and tar-

get (gold) for various examples. A small subset of the corre-

spondences is shown for the sake of clarity.

The final result of the correspondence computation is a
set of correspondences {(si, ti)} that relate points si ∈ Ŝ to
a target sample ti ∈ T . Fig. 4 illustrates the correspondences
for three different non-rigid registration examples. Note how
reliable correspondences are found even under large defor-
mations.

5. Deformation Optimization

Once correspondences are computed, we deform the surface
to best align the corresponding points. In this section, we
first describe how sample points can be grouped together
in clusters whose deformation can be roughly described us-
ing a single rigid transformation. We then discuss how this
clustered representation is used to find the optimal deformed
sample positions using an energy minimization approach, af-
ter which we describe how to propagate the deformations
onto the complete surface.

5.1. Cluster Computation

Clusters are groups of sample points whose deformation can
be described by a single rigid transformation. For exam-
ple, when aligning body scans, the lower and upper arm can
each be represented by a single cluster, while the sample
points near the elbow each define their own cluster. Group-
ing points and sharing their transformation greatly improves
the stability of the optimization process when registering in-
complete and noisy scans.

At the beginning of the clustering process, we create a
single cluster Ci = {si} for every sample si. We then apply
a forward search method [FCOS05] to iteratively combine
neighboring clusters until a user-defined quality threshold is
reached. In [FCOS05], forward search methods have been
used in finding points that can be fitted well by planes. In
our paper, we use forward search methods to find correspon-
dences that can be described by rigid motions.

For every cluster Ck, we define the extended cluster C̃k by
adding all neighboring points to the extended cluster:

C̃k = Ck

[

si∈Ck

Ng(si, Ŝ). (7)

We will call two clusters neighboring if their extended clus-
ters intersect.

Each cluster Ck is assigned a rigid transformation that

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.
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W.  Chang,  M.  Zwicker,  Automatic  Registration  for  Articulated  Shapes,  Computer  Graphics  Forum  (Proceedings  of  SGP  
2008),  1459-‐‑1468,  2008.	

Q.-‐‑X.  Huang,  B.  Adams,  M.  Wicke,  L.  J.  Guibas,  Non-‐‑Rigid  Registration  Under  Isometric  Deformations,  Proc.  of  the  
Symposium  on  Geometry  Processing,  pp.1449-‐‑1457,  2008.	

Poisson 
sampling 
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Planned sampling 

•  Random sampling 
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Landmark  transfer:  key  idea	

Graph GM 

•  Sufficient to define landmark  
•  As small as possible 
•  Unique 
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Assumption:  shapes  are  approximately  isometric	

g1	

g2	

g3	

L	

Source  shape  MS	 Target  shape  MT	
Define   landmark   position   L  
with   respect   to   geometric  
f e a tu r e s   a nd   geodes i c  
distances  to  them	

GM	

ĝ1

ĝ3

ĝ2
L̂

Match  graphs	



Intrinsic  wave  descriptor	
•  In spirit of [Tevs et al.] 
•  Isometry invariant 
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Identify  distorted  
iso-‐‑contours	

All  iso-‐‑contours	

Original  IWD	

Retain	

Modified  IWD	

Dx = (
l1
2πr1

, l2
2πr2

,..., l16
2πr16

)T

!

∃a ∈ li : a ≥ 0.1p(li )

µ +σ!" #$

Firstly	 Secondly	

Intrinsic   wave   descriptor  
polygonal  approximation	

Further  we  modify  IWD  towards  robustness  to  mesh  sampling:	

Problem	



Extracting  extremities	
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γ (x) ≡ D'
x 2

−1
Def.  Given  modified  intrinsic  wave  descriptor,  	D'

x

•  Increases  on  the  “sharp”  features  of  the  shape	

•  Comes  up  to  +∞  for  a  vertex  on  the  tip  of  an  
infinitely  sharp,  needle-‐‑like  shape	

Xγ

IWD  on  a  flat  patch	 IWD  on  a  sharp  peak	

Compute  convexity	
over  the  mesh	

γ (x)

Retain  most  prominent  set  
with  respect  to  	γ (x)

Step  1	 Step  2	 Step  3	

Cluster                and  extract  	
extremities	

min	

max	
Xγ

argmaxδ(g, x)
x∈Cγ ,i



Ullmann J.R., An Algorithm for Subgraph Isomorphism, Journal of the Association for Computing 
Machinery, vol. 23, pp. 31-42, 1976. 

GF

GM

ĜF,1

ĜF,2

ĜF,k

GM

Target  1	
Target  2	

Target  k	

Graph	
Matching	
[Ullmann]	

Convexity  extremities  -‐‑>    full  graph  GF	

Compute  a  minimal  graph  for  
user-‐‑provided  landmark	

Matching  1	

Matching  k	

Matching  2	

MS	



Minimal  graph  GM  construction	
1.  Position of the landmark is uniquely 

defined by its geodesic distances to 
each node in the minimal graph 
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 (a) (b) 

δ(v, gA) 

v 

δ(v, gB) 

δ(v, gB) δ(v, gA) 

gA gB 

v 

δ(v, gC) 

δ(v, gA) δ(v, gB) 

v gC 

gA gB 

 (a) (b) 

2.  The landmark is inside a 
convex hull of the N-gon 
formed by the graph 
nodes 

 

3.  The minimal graph is a 
unique subgraph of the 
full graph 

 Checked by self-matching 
on the shape via Ulmann’s 
approach 



Minimal  graph	
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Less  desirable	Compact   graph  
is  preferred	

GM	

GF	

GM	



Landmark  transfer	
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MS  –  source  shape,  MT  –  target  shape	
GM  =  {VM,  EM}	
	
Feature  point  coordinates  (FP-‐‑coordinates)  of  v:	

Transferred  point          must  satisfy:	
	

However,  in  practice:	

//  FP-‐‑coordinates  on  the  source  MS	

//  FP-‐‑coordinates  on  the  target  MT	

v̂

δMS
(v) = (δ(v,g1),...,δ(v,gk ))

T



Geodesic  distance  changes	
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Geodesic  distance  as  a  shortest  distance  on  the  surface:	

Problem:	
•  Geodesic  path  and  its  length  changes  between  u  and  v  with  a  mesh  deformation  (a)  (b)  (c)	
•  In  our  experiments  we  observed  up  to  9%  of  change  in  geodesic  distances	

Solution:	
•  Modify  geodesic  distances  on  the  target  to  make  them  similar  to  those  on  the  source	

u	

v	
(a)	

(c)	(b)	

û

v̂

û

v̂

δ(u,v) ≠δ(û, v̂)



Landmark  transfer	
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H(gi)  -‐‑  geodesic  distance  histogram	
	
Def.  Distribution  of  the  geodesic  distances  between  the  vertex  gi  and  all  other  
vertices  of  the  mesh  MS	

Histograms  H(gi)   and                 might   be  
dissimilar  for  corresponding  vertices      	

H (ĝi )

Interpolated   geodesic   histograms  
make  values   of   geodesic  distances   on  
the  target  closer  to  the  source	



Interpolating  geodesic  distances	
Def.               interpolated geodesic distance: 

IGG 

d  is  a  histogram  metric  [Earth  Mover’s  Distance]	

argmin
pj

(d(HI (ĝi ),H (gi )))

δI (v̂, ĝi ) =
wj (v̂) ⋅δ(gj,gi )

wk (v̂)
k=1

n̂M

∑j=1

n̂M

∑

Get  power  parameters  pj  solving	

,  where	

δI (v̂, ĝi )

wj (v̂) =
1

δ(v̂, ĝ j )
pj

Inverse  distance  
weighting	

RUBNER  Y.,  TOMASI  C.,  GUIBAS  L.  J.:  The  earth  mover’s  distance  as  a  metric  for  image  retrieval.  Int.  J.  Comput.  Vision  
40,  2  (2000),  99–121.	
	

g1	 g2	

ĝ1 ĝ2
v̂w1	
w2	
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Evaluation  of  the  modified  wave  
descriptor	
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Original	
mesh	
(5K)  	

Simplified	
mesh	
(2K)  	

max	

min	

Original  IWD	 Modified  IWD	 Difference  map	



Results	

Data  set	

Cat	 4994	 9977	 146ms	 21ms	 39ms	 59ms	 6.63s	
Centaur	 5002	 10000	 86ms	 23ms	 128ms	 338ms	 48.96s	
Dog	 5000	 9991	 104ms	 20ms	 33ms	 39ms	 5.98s	

Embossed  
plate	

1482	 2960	 19ms	 7ms	 85ms	 1708ms	 2.81s	

IGG 

T tδ tVF GM tV̂F + tĜM
X tH

Computational  time:	

•  Matlab  implementation	
•  Update  of  geodesic  distances  is  the  most  time  consuming  task	
•  Update   of   geodesics   according   to   the   histograms   is   required   to   be  

computed  only  once  per  each  target  mesh	
	

10  cat  models,  5  centaur  models,  7  dog  models  from  TOSCA  Shape  Repository	
3  synthetic  embossed  plates	



Results	
Quality of transfer (QoT) with respect to ground truth 
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•  1 

•  Mixed   data   set   of   different   subjects   in  
different  postures	

	

•  Mean  and  Max  error  values  vary  from  one  
posture   to   another   due   to   imperfect  
isometries	

max  error	
mean  error	



Results	
Quality of transferred landmark: the QoT is compared with the ground-truth correspondences from 

high-resolution TOSCA models 
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0

18.0	

0

11.0	



Results	
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0

16.0	

0

12.0	



Limitations	
•  Missing data? Holes? 

 
•  Featureless objects 

•  Symmetry 
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Genus  0	 Genus  2	

?	

Problem  of  intrinsic  symmetries	

GM,1	

GM,4	
GM,3	

GM,2	



Future  plans	

•  Dynamic mesh registration 4D (3D + t) 
•  geometric + dynamic features 
•  Registration speed up by using Spatial 

segmentation -> registration of segments 
 

IGG 

•  Extension to full matching 
•  Maximum reuse of GM for the correspondence 

computation 
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